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Abstract

Transverse ply cracking and its induced delaminations at the f:89> interfaces in ð[ [ [ :8i:fm:89nŁs laminates
are theoretically investigated[ Three cracked and delaminated model laminates\ one _ve!layer model "FLM#
laminate ðSL:fm:891n:fm:SRŁT and two three!layer model "TLM# laminates I and II\ ðfm:891n:fmŁT and
ðS?L:891n:S?RŁT\ are designed to examine constraining mechanisms of the constraining plies of the center 89>!
ply group on transverse crack induced delaminations\ where SL\ SR\ S?L and S?R are sublaminates ð[ [ [:8iŁT\
ð8i:[ [ [ŁT\ ð[ [ [:8i:fmŁT and ðfm:8i:[ [ [ŁT\ respectively[ A sublaminate!wise _rst!order shear laminate theory is
used to analyze stress and strain _elds in the three cracked and delaminated laminates loaded in tension[
The extension sti}ness reduction of the constrained 89>!plies and the strain energy release rate for a local
delamination normalized by the square of the laminate strain are calculated as a function of delamination
length and transverse crack spacing[ The constraining e}ects of the immediate neighboring plies and the
remote plies are identi_ed by conducting comparisons between the three model laminates[ It is seen for the
examined laminates that the nearest neighboring ply group of the 89>!plies primarily a}ects the sti}ness
reduction and also the normalized strain energy release rate\ whereas the in~uences of the remote constraining
layers are negligible[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The fracture process of composite laminates under monotonic tension and tension fatigue
loading involves sequential accumulation of damage in the form of matrix cracking\ edge delami!
nation and local delamination prior to catastrophic failure "see e[g[ Jamison et al[\ 0873^ Crossman
and Wang\ 0871^ O|Brien\ 0871\ 0874#[ Local delamination initiates at matrix ply cracks due to a
high interlaminar stress concentration at the crack tips whereas edge delamination originates from

� Corresponding author[ Current address] Laboratorium fu�r Technisch Mechanik\ Universita�t Paderborn\ 22987
Paderborn\ Germany[



J[ Zhan` et al[ : International Journal of Solids and Structures 25 "0888# 702Ð735703

the load!free edge of a composite plate[ These through!thickness failure modes can be detrimental
to the strength and sti}ness of the composite laminates[ It is therefore important to be in a position
to predict their onset strain and growth[

Over the years many theories have been developed which attempt to model\ with varying degree
of sophistication\ the laminate reduced properties and the strain energy release rates due to matrix
cracking and its induced delamination "so!called local delamination#[ The strain energy release
rate G associated with a local delamination can be compared with an appropriate value of the
interlaminar fracture toughness\ obtained experimentally "Martin and Murri\ 0889#\ to estimate
the initiation and propagation of such a delamination[ The models could be categorized in terms
of their adopted stress analysis methods used to calculate the stress distributions in the cracked
laminates[

Based on shear!lag type arguments transverse ply cracking in cross!ply type laminates have been
intensively modeled with varying emphases on the prediction of crack spacing saturation "Parvizi
and Bailey\ 0867#\ the statistical characteristic of crack formation "Fukanaga et al[\ 0873^ Laws
and Dvorak\ 0877#\ determination of the shear!lag parameters and the in!plane sti}ness reduction
"Nuismer and Tan\ 0877^ Han and Hahn\ 0878^ Zhang et al[\ 0881a# as well as the in~uence of the
stacking sequence "Zhang et al[\ 0881b^ Xu\ 0884#[ Dharani and Tang "0889# described a consistent
shear!lag analysis to determine the interlaminar shear and normal stresses at the tips of matrix
cracks inducing delaminations[ Delamination occurs when the maximum interlaminar shear stress
reaches a critical value[ A numerical eigenvalue technique is required to solve the resulting gov!
erning equations[ Zhang et al[ "0883# have derived the closed!form expressions for the strain energy
release rate and the sti}ness reduction due to a local delamination where hygrothermal e}ects have
also been taken into account[ Comprehensive comparisons between this model\ Nairn and Hu
"0881# variational model and 1!D _nite element method results have been carried out\ suggesting
that Zhang et al[|s more simple shear!lag model is accurate in comparison with NairnÐHu|s model[
The problem with the shear!lag analyses is that the constraining layer "sublaminate# is assumed as a
homogeneous medium without taking into account the stacking sequence e}ects "e[g[ no di}erence
between constraining layers ð9:34:−34ŁT and ð34:−34:9ŁT#[

The variational model based on the principle of minimum complementary energy was proposed
by Hashin "0876# with application to the sti}ness reduction and stress analysis of the cross!ply
laminates with transverse ply cracking[ Thereby the assumption of constant in!plane stresses across
the thickness has been made[ Nairn and Hu "0881# used the variational technique to predict
multiple transverse ply cracking and the growth of a delamination induced by matrix cracking[
Analyses of more general in!plane stresses and a non!linear stress distribution across the thickness
were conducted by Varna and Berglund "0880#[ However\ using a variational approach to calculate
the stress _eld in a cracked laminate is more cumbersome than applying methods based on shear!
lag type arguments[ Again\ by using the assumption of a homogeneous constraining layer makes
it impossible to account for the in~uence of the stacking sequence of constraining sublaminates[

The third category of a stress analysis method is based on the laminate plate theories[ O|Brien
"0874# using the classical laminate plate theory and by assuming that the laminated portion and
the delaminated interval carry loads in series\ derived a closed!form equation for G\ which for
certain lay!ups can successfully predict the delamination onset strain[ The model has been further
extended to include the e}ect of residual thermal and moisture stresses on G "O|Brien\ 0880#[
However\ the author neglected the e}ect of matrix cracks which exist before a local delamination
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occurs[ Armanios et al[ "0880# developed a sublaminate approach for the analysis of a local
delamination including the e}ect of residual hygrothermal stresses under plane strain conditions
by utilizing the _rst!order shear deformation laminate plate theory[ A cracked and delaminated
cross!ply type laminate is divided into four sublaminates by the delamination interfacial surface
and the cross!section to which the delamination tip reaches[ The model was used to predict the
onset of local delaminations in T299:823 graphite:epoxy ð214:89nŁs laminates by utilizing Gri.th|s
energy release rate criterion[ Praveen and Reddy "0883# analyzed the sti}ness reduction and
interlaminar stresses of ð9:89:9Ł type laminates with transverse ply cracks by using Reddy|s layer!
wise laminate theory and a complementary principle similar to that of Hashin "0876#[

A three!dimensional "2!D# _nite element analysis was performed by Salpekar and O|Brien "0880#
to evaluate the energy release rate for local delaminations in glass _ber!reinforced plastic laminates
containing 89> matrix cracks of large spacing and loaded in tension[ It was observed that the value
of the total G calculated near the free edge increased with increasing delamination length and
approached O|Brien|s "0874# closed!form solution for delamination lengths of about four ply
thicknesses from the matrix crack[ It was concluded that a convergence study\ using several mesh
re_nements\ is needed to make quantitative comparisons of the analytical solution with the 2!D
_nite element model[ The in~uence of transverse ply crack spacing on the strain energy release rate
associated with a local delamination was investigated numerically by performing a 1!D _nite
element analysis "Zhang et al[\ 0883#[ The G!value for a local delamination decreases notably with
an increasing matrix cracking[

A few of the existing works only pay attention to a quantitative examination of constraining
e}ects on the transverse ply cracking and its induced delamination[ In this article the constraining
in~uences of the nearest!neighboring ply group of the core 89>!plies and the rest constraining plies
on the sti}ness reduction of the constrained 89>!plies and on the strain energy release rate due to
a local delamination are theoretically investigated[ Firstly\ three equivalent constraint model
laminates\ one _ve!layer model laminate and two three!layer model laminates\ are proposed[ The
cracked and delaminated model laminates are then subdivided by the cross!section separating the
laminated and delaminated intervals[ Analyses of stress and strain _elds are carried out by applying
the _rst!order shear deformation laminate theory to each sublaminate[ The in situ damage e}ective
function "IDEF# L11\ introduced in our previous work "Zhang et al[\ 0881a\ 0883# for characterizing
the extension sti}ness reduction of the constrained 89>!plies\ is explicitly expressed in terms of
delamination length and transverse crack spacing by using the obtained stress _eld[ The strain
energy release rate for a local delamination is derived as a function of delamination length and
transverse crack spacing[ The three model laminates are used to predict the sti}ness reduction of
the constrained 89>!plies and the normalized strain energy release rate due to a local delamination
against the delamination length for a given transverse crack density for various stacking sequence
laminates[ A comparison between the three model laminates has been conducted[

1[ Equivalent constraint model "ECM#

If a ð[ [ [:8i:fm:89nŁs symmetric laminate is under static or fatigue tensile loading matrix cracking
in the transverse plies "89># is the _rst damage mode observed and multiplied by an increasing
applied load[ Subsequently\ a local delamination could initiate from the transverse ply crack tips
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due to high local stresses at the crack tips[ The through!width uniform local delaminations growing
from 89>!ply matrix crack tips are assumed according to Fig[ 0[ The three!layer Equivalent
Constraint Model "ECM# laminate for the 89>!ply cracking and its induced delaminations\ pro!
posed by Fan and Zhang "0882#\ Zhang et al[ "0881a\ 0883#\ consists of two sti}ness!equivalent
outer constraining sublaminates of ð[ [ [:8i:fmŁT and ðfm:8i:[ [ [ŁT and the core ply group of ð891nŁ\
Fig[ 0"c#[ The three!layer ECM model laminate II "Fig[ 0"c## is accurate enough to estimate the
global properties of the laminates\ e[g[ a sti}ness reduction\ which are not very sensitive to the
details of the micro con_gurations[ However\ delamination and cracking failure might depend
strongly upon the local microstructure of a laminate[ The nearest neighboring ply group "f# of
the 89>!plies could primarily a}ect the initiation and growth of transverse cracking as well as
delamination at the f:89> interface whereas the rest plies have a relatively smaller contribution to
the constraining e}ect on these damage modes[ In order to account for these hierarchical con!
straining mechanisms\ a _ve!layer ECM model laminate ðSL:fm:891n:fm:SRŁT "Fig[ 0"a## and
another three!layer model laminate ðfm:891n:fmŁT "designated by TLM I\ Fig[ 0"b##\ where SL and
SR are sublaminates ð[ [ [:8iŁT and ð8i:[ [ [ŁT\ respectively\ are introduced in addition to the three!
layer model laminate proposed previously and designated by TLM II in Fig[ 0"c##[ Both the nearest
neighboring f!plies of the center 89>!plies are called two primary constraining layers and the two
outer sublaminates SL and SR are secondary constraining layers[ A comparison between the TLM
I and the _ve!layer model "FLM# laminates can be used to investigate the e}ects of secondary
constraining layers whereas TLM I laminates with a changing constraining ply orientation are
applied for the identi_cation of the in~uences of primary constraining plies[ The e}ects of a local
lay!up con_guration on the sti}ness reduction and the strain energy release rates due to a local
delamination as well as a matrix cracking could be examined by conducting a comparison between
the FLM and TLM II laminates[

2[ Stress analysis of a _ve!layer model "FLM# laminate

Let the _ve!layer model laminate ðSL:fm:891n:fm:SRŁT to be subjected to a tension load\ Fig[
1"a#[ The matrix cracks are assumed to exist in the 89>!ply group with a uniform crack spacing of
1s^ local delaminations initiate and grow from both tips of each matrix and span the width of the
specimen[ Further for symmetry reasons only one quarter of the repeating interval of the laminate
is modeled[ The modeled portion length s is divided into six sublaminates as shown in Fig[ 1"a#
and the delamination length at the interfaces of f:89> is denoted by l[ The laminate beam model
which results in a one!dimensional procedure is used here by assuming plane strain in the width
direction\ which to some extent represents the situation of the deformation behavior of the
composite laminate interior[ The sublaminates are referred to three local co!ordinate systems\
respectively\ with a common y!axis and their origins at the centers of the left cross!sections of the
sublaminates 0\ 1 and 2\ Fig[ 1[ The displacements in y! and z!directions within each sublaminate
are assumed to be of the form "Armanios et al[\ 0880#

v"y\ z# � V"y#¦zb"y# "0a#

w � W"y# "0b#
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Fig[ 0[ Equivalent constraint model "ECM# laminates for the cracked and delaminated ð[ [ [:8i:fm:89nŁs laminates] "a# a
_ve!layer model "FLM# laminate^ "b# a three!layer model laminate I "TLM I#^ "c# a three!layer model laminate II
"TLM II#[
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Fig[ 1[ Subdivision of a quarter the periodic interval of a ð[ [ [:8i:fm:89nŁs laminate] "a# a _ve!layer model "FLM# laminate^
"b# a three!layer model "TLM# laminate[

The shear deformation is recognized through the rotation b"y#[ The equilibrium equations for
each sublaminate take the form

N\y¦Tt−Tb � 9 "1a#

M\y−Q¦
h
1

"Tt¦Tb# � 9 "1b#

Q\y¦Pt−Pb � 9 "1c#
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where N\ Q and M are axial force\ shear force and bending moment resultants at a cross!section^
P and T denote the interlaminar peel and shear stresses^ the subscripts {{t|| and {{b|| indicate the
top and bottom surfaces^ h is the thickness of a sublaminate[ Using the strain!displacement
relations\ eqns "0a\b# and the in!plane stressÐstain relationships of a lamina\ the constitutive
relationships of a sublaminate in terms of the force and moment resultants read as follows

N � A11V\y¦B11b\y "2a#

M � B11V\y¦D11b\y "2b#

Q � A33"b¦W\y# "2c#

where A11\ B11\ D11 and A33 are the extension\ coupling\ bending and out!of!plane shear sti}nesses\
respectively\ from the classical laminate theory[ For the one!dimensional model the other sti}ness
components of the anisotropic sublaminate do not appear in the constitutive equations due to the
assumption of plane strain with respect to the width of the specimen[ Substitution of eqns "2aÐc#
into eqns "1aÐc# gives

A11V\yy¦B11b\yy¦Tt−Tb � 9 "3a#

0D11−
B1

11

A111 b\yy−A33"b¦W\y#¦0
h
1

−
B11

A111Tt¦0
h
1

¦
B11

A111Tb � 9 "3b#

A33"b\y¦W\yy#¦Pt−Pb � 9 "3c#

The quantities with a bracketed superscript {{"i#|| "i � 0\ 1\ [ [ [ \ 5# to be used afterward belong to
the respective sublaminate[

2[0[ Laminated portion "9 ¾ y ¾ s−l#

The continuity conditions of the displacements at the interlaminar surfaces between the sub!
laminates 0 and 1\ and the sublaminates 1 and 2 read in the laminated interval

V "0# "y#−
h"0#

1
b"0# "y# � V "1# "y#¦

h"1#

1
b"1# "y# "4a#

V "1# "y#−
h"1#

1
b"1# "y# � V "2# "y#¦

h"2#

1
b"2# "y# "4b#

W "0# "y# � W "1# "y# � W "2# "y# � 9 "4c#

Applying eqns "3aÐc# to every sublaminate and by using eqn "4c#\ one can obtain

A"0#
11V "0#

\yy¦B "0#
11b"0#

\yy−T "0#
b � 9 "5a#

A"1#
11V "1#

\yy¦T "1#
t −T "1#

b � 9 "5b#

A"2#
11V "2#

\yy¦T "2#
t � 9 "5c#
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0D "0#
11−

B "0#1
11

A"0#
11 1 b"0#

\yy−A"0#
33b"0#¦0

h"0#

1
¦

B "0#
11

A"0#
111T "0#

b � 9 "5d#

D "1#
11b"1#

\yy−A"1#
33b"1#¦

h"1#

1
"T "1#

t ¦T "1#
b # � 9 "5e#

D "2#
11b"2#

\yy−A"2#
33b"2#¦

h"2#

1
T "2#

t � 9 "5f#

A"0#
33b"0#

\y −P "0#
b � 9 "5g#

A"1#
33b"1#

\y ¦P "1#
t −P "1#

b � 9 "5h#

A"2#
33b"2#

\y ¦P "2#
t −P "2#

b � 9 "5i#

where the load!free assumption at the top surface and the condition of zero interfacial shear stress
at the midplane have been used[ By using the continuity conditions for the interfacial stresses one
can solve eqns "4a\b# and "5aÐc# in order to express V "i#

\yy and T "i#
b in terms of the sublaminate

rotation b"i#
\yy "see Appendix 0#[ Then\ the substitution of these quantities into eqns "5dÐf# results

in "see Appendix 0#

&
a00 a01 a02

a10 a11 a12

a20 a21 a22
' 8

b"0#
\yy

b"1#
\yy

b"2#
\yy
9−&

A"0#
33 9 9

9 A"1#
33 9

9 9 A"2#
33
' 8

b"0#

b"1#

b"2#9� 9 "6#

where aij are functions of the elastic constants of a lamina and of the lay!up parameters "see
Appendix 2#[ Further\ the characteristic equation corresponding to eqns "6# reads as follows]

"a00a11a22¦1a01a02a12−a22a
1
01−a00a

1
12−a11a

1
02#l�2

−"a00a11A
"2#
33¦a22a11A

"0#
33¦a22a00A

"1#
33−a1

01A
"2#
33−a1

12A
"0#
33−a1

02A
"1#
33#l�1

¦"a00A
"1#
33A"2#

33¦a11A
"0#
33A"2#

33¦a22A
"1#
33A"0#

33 #l�−A"0#
33A"1#

33A"2#
33 � 9 "7#

Its three roots l�j " j � 0\ 1\ 2# are positive real numbers for all laminates examined here[ The
eigenvector "pj# �"p"0#

j p"1#
j 0#T corresponding to the eigenvalue l�j is given as

6
p"0#

j

p"1#
j 7�

l�j
"a00l�j−A"0#

33 #"a11l�j−A"1#
33 #−a1

01l�1
j 6

a02A
"1#
33−"a11a02−a01a12#l�j

a12A
"0#
33−"a00a12−a01a02#l�j7

for j � 0\ 1\ 2 "8#

Using the condition of b"y# � −b"−y# for the sublaminates 0\ 1 and 2 the solutions b"i# in the
governing eqns "6# read

b"i# � s
2

j�0

ajp
"i#
j sinh"ljy# for i � 0\ 1\ 2 "09#
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where lj � zl�j\ and the parameters aj are undetermined constants[ Substituting equation "09#
into eqns "A0[4aÐc# gives

V "i# � s
2

j�0

ajg
"i#
j sinh"ljy#¦a2¦iy for i � 0\ 1\ 2 "00#

where g"i#
j are constants "see Appendix 2# and a3\ a4 and a5 are undetermined constants[ Substituting

eqns "09# and "00# into eqns "2aÐc# and "A0[3a\b# gives

N "i# � s
2

j�0

ajh
"i#
j cosh"ljy#¦A"i#

11a2¦i for i � 0\ 1\ 2 "01#

M "i# � s
2

j�0

ajj
"i#
j cosh"ljy#¦B "i#

11a2¦i for i � 0\ 1\ 2 "02#

T "0#
b � T "1#

t � s
2

j�0

ajl
1
j "A"0#

11g"0#
j ¦B "0#

11p"0#
j # sinh"ljy# "03#

T "1#
b � T "2#

t � −A"2#
11 s

2

j�0

ajg
"2#
j l1

j sinh"ljy# "04#

where the constants h"i#
j and j"i#

j are given in Appendix 2[

2[1[ Sublaminates {{4|| and {{5|| "s−l ¾ y ¾ s#

The displacement continuity conditions between sublaminate {{4|| and {{5|| are

V "5# "y#−
h"0#

1
b"5# "y# � V "4# "y#¦

h"1#

1
b"4# "y# "05a#

W "4# "y# � W "5# "y# "05b#

The shear and normal stresses at the surfaces and the interface satisfy the following conditions

T "5#
t � 9\ T "5#

b � T "4#
t \ T "4#

b � 9 "06a\b\c#

P "5#
t � 9\ P "4#

t � P "5#
b \ P "4#

b � 9 "06d\e\f#

Applying eqns "3a\b\c# to every sublaminate and by noting eqns "06a#Ð"06f#\ one can obtain

A"0#
11V "5#

\yy¦B "0#
11b"5#

\yy−T "5#
b � 9 "07a#

A"1#
11V "4#

\yy¦T "4#
t � 9 "07b#

0D "0#
11−

B "0#1
11

A"0#
11 1 b"5#

\yy−A"0#
33 "b"5#¦W "5#

\y #¦0
h"0#

1
¦

B "0#
11

A"0#
111T "5#

b � 9 "07c#

D "1#
11b"4#

\yy−A"1#
33 "b"4#¦W "4#

\y #¦
h"1#

1
T "4#

t � 9 "07d#
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A"0#
33 "b"5#

\y ¦W "5#
\yy #¦A"1#

33 "b"4#
\y ¦W "4#

\yy # � 9 "07e#

By integrating the eqn "07e# and by using the continuity relation "05b#\ the boundary condition of
"Q"4#¦Q"5##y�s � 9 and the constitutive relation\ eqn "2c#\ result in

W "4#
\y � W "5#

\y � −
0

A"0#
33¦A"1#

33

"A"0#
33b"5#¦A"1#

33b"4## "08#

Further\ the combination of eqns "05a#\ "06b# and "07a\b# results in

T "5#
b � T "4#

t �
A"1#

11

1"A"0#
11¦A"1#

11 #
ðh"1#A"0#

11b"4#
\yy¦"h"0#A"0#

11¦1B "0#
11 #b"5#

\yy Ł "19a#

V "5#
\yy �

0

1"A"0#
11¦A"1#

11 #
ðh"1#A"1#

11b"4#
\yy¦"h"0#A"1#

11−1B "0#
11 #b"5#

\yy Ł "19b#

V "4#
\yy � −

0

1"A"0#
11¦A"1#

11 #
ðh"1#A"0#

11b"4#
\yy¦"h"0#A"0#

11¦1B "0#
11 #b"5#

\yy Ł "19c#

By substituting eqns "08# and "19a# into eqns "07c\d# gives

$
b00 b01

b10 b11% 6
b"4#

\yy

b"5#
\yy7¦

A"0#
33A"1#

33

A"0#
33¦A"1#

33 $
−0 0

0 −0% 6
b"4#

b"5#7� 9 "10#

where bij are functions of the elastic lamina properties and the lay!up parameters "see Appendix
2#[ The general solutions of eqn "10# are written as

6
b"4#

b"5#7� u0 evy 6
q

07¦u1 e−vy 6
q

07¦u2y 6
0

07¦u3 6
0

07 "11#

where v is the non!zero eigenvalue of eqn "10# and is given by

v �X
A"0#

33A"1#
33 "b00¦b11¦1b01#

"A"0#
33¦A"1#

33 #"b00b11−b1
01#

"12a#

and

q � −
b11¦b01

b00¦b01

"12b#

By integrating eqns "08# and "19b\c# and by substituting eqn "11# into them result in

V "4# � −k0"u0 evy¦u1 e−vy#¦u4y¦u6 "13a#

V "5# � k2"u0 evy¦u1 e−vy#¦u5y¦u7 "13b#

W "4# � W "5# � −
A"0#

33¦qA"1#
33

v"A"0#
33¦A"1#

33 #
"u0 evy−u1 e−vy#−

0
1

u2y
1−u3y¦u8 "13c#

Introducing eqns "11# and "13a\b# into eqns "2aÐc# gives
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N "4# � −k0A
"1#
11v"u0 evy−u1 e−vy#¦A"1#

11u4 "14a#

N "5# � k0A
"1#
11v"u0 evy−u1 e−vy#¦A"0#

11u5¦B "0#
11u2 "14b#

M "4# � k1"u0 evy−u1 e−vy#¦D "1#
11u2 "14c#

M "5# � v"D "0#
11¦B "0#

11k2#"u0 evy−u1 e−vy#¦D "0#
11u2¦B "0#

11u5 "14d#

where the ki are given in Appendix 2[

2[2[ Sublaminate 3 "s−l ¾ y ¾ s#

The symmetry of the laminate implies

W "3# "y# � 9\ T "3#
b � 9 "15a\b#

The condition of the traction!freedom at the upper surface of the sublaminate 3 reads

T "3#
t � 9 P "3#

t � 9 "15c\d#

By applying eqns "3a\b\c# to the sublaminate 3 and by noting eqns "15aÐd#\ one can obtain

A"2#
11V "3#

\yy � 9 "16a#

D "2#
11b"3#

\yy−A"2#
33b"3# � 9 "16b#

A"2#
33b"3#

\y −P "3#
b � 9 "16c#

The general solutions of eqns "16a\b# are

b"3# � c0 ev0y¦c1 e−v0y "17a#

V "3# � c2y¦c3 "17b#

where

v0 �X
A"2#

33

D "2#
11

"17c#

The substitution of eqns "17a\b# into the constitutive eqns "2a\b# results in

N "3# � A"2#
11c2 "18a#

M "3# � D "2#
11v0"c0 e−v0y−c1 e−v0y# "18b#

2[3[ Determination of the constants ai\ uj and ck

In order to determine the nineteen constants of ai "i � 0\ 1\ [ [ [ \ 5#\ uj " j � 0\ 1\ [ [ [ \ 8# and ck

"k � 0\ 1\ 2\ 3# the same number of independent boundary and continuity conditions have to be
prescribed[ Assuming the laminate subjected to a tension force\ N\ the boundary conditions at the
ends of the model laminate are enforced as
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N "3# "s# � 9 b"4# "s# � 9 b"5# "s# � 9 "29a\b\c#

V "4# "s# � V "5# "s# N "4# "s#¦N "5# "s# � 0
1
N "29d\e#

N "0# "9#¦N "1# "9#¦N "2# "9# � 0
1
N "29f#

The interfacial displacement continuity eqns "4a\b# have to be checked by substitution of the
midplane displacement and rotation solutions ðeqns "09# and "00#Ł for the determination of the
unknown constants because what have been used in the derivation of the governing eqn "6# are
the second derivatives of such interface displacement continuity equations instead of themselves[

The displacement continuity conditions between the ends of the sublaminates read

V "0# "s−l# � V "5# "s−l# V "1# "s−l# � V "4# "s−l# "20a\b#

V "2# "s−l# � V "3# "s−l# b"0# "s−l# � b"5# "s−l# "20c\d#

b"1# "s−l# � b"4# "s−l# b"2# "s−l# � b"3# "s−l# "20e\f#

W "4# "s−l# � 9 "20g#

In addition\ the force and moment resultants\ N and M "or the _rst!order derivatives of the
midplane displacement and rotation\ V\y and b\y# are enforced to be continuous at the cross!section
y � s−l

N "1# "s−l# � N "4# "s−l# N "2# "s−l# � N "3# "s−l# "20h\i#

M "1# "s−l# � M "4# "s−l# M "2# "s−l# � M "3# "s−l# "20j\k#

The continuity conditions of the force and moment resultants\ N and M\ between the sublaminates
0 and 5 are not needed to be speci_ed since they can be derived by combining eqns "29a\e\f# and
"20hÐj# with eqns "2a\b#\ "4a# and "05a#[ The following equations for determining aj " j � 0\ 1\ [ [ [ \ 5#
can be obtained from eqns "29aÐf#\ "4a\b# and "20aÐk# "see Appendix 1#

ðFŁ"a¹# � "R# "21a#

a3 � a4 � a5 �
N

A11

"21b#

where A11 is the extension sti}ness of an undamaged laminate\ and the elements of the third!order
matrix ðFŁ2×2\ vectors "a¹#2 and "R#2 are

aj � −a¹ j

N
A11 cosh"lj"s−l##

"22a#

F0j"l\ s−l# � 1rj"0−q# tanh"vl#¦"p"0#
j −p"1#

j # tanh"lj"s−l## "22b#

F1j"l\ s−l# �"0−q#djl−"p"0#
j q−p"1#

j # tanh"lj"s−l## "22c#

F2j"l\ s−l# � h"2#
j "22d#

for j � 0\ 1\ 2[
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R0 � 1"0−q# tanh"vl#k6 "23a#

R1 �"0−q#k5l "23b#

R2 � A"2#
11 "23c#

The other undetermined constants expressed in terms of aj " j � 0\ 1\ 2# are given in Appendix 1[

3[ Stress analysis of a three!layer model "TLM# laminate

A quarter of the cracked and delaminated TLM laminate is segregated into four sublaminates
as it has been done by Armonios et al[ "0880#\ Fig[ 1"b#[ The procedure for analyzing the three!
layer ECM model laminate is similar to that for the _ve!layer ECM model laminate[ Therefore\
only the _nal results are outlined here[ The quantities calculated by the three!layer models are
marked by a superscript {{?||[ The eqns "0#Ð"3# are also valid for the three!layer sublaminate
analysis[

3[0[ Laminated re`ion "9 ¾ y ¾ s−l#

Using displacement and stress continuity conditions at the interface between the sublaminates
0 and 1 in the three!layer model laminate\ the application of eqns "3aÐc# to the laminated interval
results in the following governing equations

$
a?00 a?01

a?10 a?11% 6
b?"0#

\yy

b?"1#
\yy7−$

A?"0#
33 9

9 A?"1#
33% 6

b?"0#

b?"1#7� 9 "24#

where the a?ij listed in Appendix 3 are laminate constants[ The eigenvalues of the corresponding
characteristic equation are real for the examined laminates[ The two positive roots are denoted by
l?0 and l?1 given in Appendix 3[ The solutions of the above equations are

b?"0# � a?0p?0 sinh"l?0y#¦a?1p?1 sinh"l?1y# "25a#

b?"1# � a?0 sinh"l?0y#¦a?1 sinh"l?1y# "25b#

where the p?i are laminate constants listed in Appendix 3 and the a?i are undetermined constants[
The displacements of the midplane of the sublaminates are

V?"0# � a?0g?
"0#
0 sinh"l?0y#¦a?1g?

"0#
1 sinh"l?1y#¦a?2y "26a#

V?"1# � a?0g?
"1#
0 sinh"l?0y#¦a?1g?

"1#
1 sinh"l?1y#¦a?3y "26b#

The force and moment resultants read

N?"0# � a?0h?1 cosh"l?0y#¦a?1h?1 cosh"l?1y#¦A?"0#
11a?2 "27a#

N?"1# � −a?0h?0 cosh"l?0y#−a?1h?1 cosh"l?1y#¦A?"1#
11a?3 "27b#

M?"0# � a?0j?"0#
0 cosh"l?0y#¦a?1j?"0#

1 cosh"l?1y#¦B?"0#
11a?2 "27c#
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M?"1# � a?0j?"1#
0 cosh"l?0y#¦a?1j?"1#

1 cosh"l?1y# "27d#

where the laminate constants g?"i#j \ h?j and j?"i#j are given in Appendix 3[

3[1[ Sublaminate 2 "s−l ¾ y ¾ s#

The governing equations can be obtained by applying eqns "3aÐc# to the sublaminate 2 as
follows

A?"0#
11V?"2#

\yy¦B?"0#
11b?"2#

\yy � 9 b?"2#
\yy � 9 "28a\b#

By solving eqns "28a\b# gives

b?"2# � u?0y¦u?1 V?"2# � u?2y¦u?3 "39a\b#

The substitution of eqns "39a\b# into eqns "2a\b# results in

N?"2# � A?"0#
11u?2¦B?"0#

11u?0 M?"2# � B?"0#
11u?2¦D?"0#

11u?0 "30a\b#

3[2[ Sublaminate 3 "s−l ¾ y ¾ s#

The displacement and force solutions for the sublaminate 3 in the three!layer model laminate
are exactly of the same shape as those for the sublaminate 3 in the _ve!layer model laminate[ They
are re!written as follows

b?"3# � c?0 ev?0y¦c?1 e−v?0y V?"3# � c?2y¦c?3 "31a\b#

N?"3# � A?"1#
11c?2 M?"3# � D?"1#

11v?0"c?0 ev?0y−c?1 e−v?0y# "31c\d#

where

v?0 �X
A?"1#

33

D?"1#
11

"31e#

3[3[ Determination of the constants a?i\ u?j\ and c?k

The twelve end and interfacial continuity conditions are enforced as follows in order to determine
the twelve undetermined constants

b?"2# "s# � 9 N?"2# "s# � 0
1
N "32a\b#

N?"0# "9#¦N?"1# "9# � 0
1
N N?"3# "s# � 9 "32c\d#

v"0# 0y\ −
h?"0#

1 1� v?"1# 0y\
h?"1#

1 1 V?"0# "s−l# � V?"2# "s−l# "32e\f#

V?"1# "s−l# � V?"3# "s−l# b?"0# "s−l# � b?"2# "s−l# "32g\h#

b?"1# "s−l# � b?"3# "s−l# N?"1# "s−l# � N?"3# "s−l# "32i\j#
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M?"0# "s−l# � M?"2# "s−l# M?"1# "s−l# � M?"3# "s−l# "32k\l#

The determination of the constants a?j " j � 0\ 1\ 2\ 3# can be reduced due to a substitution of the
solutions for V?\ b?\ N? and M? into eqns "32aÐl#

$
F?00 F?01

h0 h1 % 6
a¹?0
a¹?17� −6

B?"0#
11x?l

A?"1#
11 7 "33a#

a?2 � a?3 �
N

A?11

"33b#

where

F?0j � j?"0#
j l¦0D?"0#

11−
B?"0#1

11

A?"0#
11 1 p?j tanh"l?j"s−l## "34a#

a?j � −a¹?j
N

A?11 cosh"l?j"s−l##
"34b#

for j � 0\ 1[ The other undetermined constants u?j and c?k are expressed in terms of a?i in Appendix
3[

4[ Stiffness reduction

Since the rotation of the end!section of the constraining layers in both the _ve!layer model
"FLM# and the three!layer model "TLM# laminates is zero\ the overall laminate axial strain can
be de_ned as follows

oy �
V "5# "s#

s
�

V "4# "s#
s

�
u4s¦u6

s
�

u5s¦u7

s
for FLM "35a#

oy �
V?"2# "s#

s
�

u?2s¦u?3
s

for TLM "35b#

Consequently\ the extension sti}ness of a damaged laminate in y!direction is given by

Ad
11 �

N
oy

"36#

Using eqn "A1[02c# the reduced extension sti}ness can be expressed as a function of the delami!
nation length and the transverse crack spacing

Ad
11 �

A11

0¦x 0
l
s
¦ s

2

j�0

a¹ jg
"2#
j

tanh"lj"s−l##
s 1

for FLM "37a#
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A?d11 �
A?11

0¦x? 0
l
s
¦ s

1

j�0

a¹?jg?
"1#
j

tanh"l?j"s−l##
s 1

for TLM "37b#

In the context of the Equivalent Constraint Model "ECM#\ the sti}ness reduction of the laminate
due to transverse cracking and its induced delamination is assumed to be attributed to the loss of
the load!carrying capacity of the 89>!plies[ The reduced sti}ness of the 89>!ply group normalized
by the sti}ness of an intact lamina\ called in situ damage e}ective function "IDEF#\ Lij\ was
introduced by Zhang et al[ "0881a\ 0883#[ It can be determined by assuming that the sti}ness of
an {{equivalent|| laminate where the degraded 89>!plies are perfectly bounded is equal to that of
the real cracked and delaminated laminate\ i[e[

L11 �
A11−Ad

11

1A"2#
11

for FLM "38a#

L?11 �
A?11−A?d11

1A?"1#
11

for TLM "38b#

Zero or unity values of the IDEF re~ect constancy or total loss of the load!carrying capacity of
the 89>!plies\ respectively[ Substitution of eqns "A2[0a#\ "A[3[0a# and "37a\b# results in the following
expressions]

L11 �

"0¦x# $
l
s
¦ s

2

j�0

a¹ jg
"2#
j

tanh"lj"s−l##
s %

0¦x $
l
s
¦ s

2

j�0

a¹ jg
"2#
j

tanh"lj"s−l#
s %

for FLM "49a#

L?11 �

"0¦x?# $
l
s
¦ s

1

j�0

a¹?jg?
"1#
j

tanh"l?j"s−l##
s %

0¦x?$
l
s
¦ s

1

j�0

a¹?jg?
"1#
j

tanh"l?j"s−l##
s %

for TLM "49b#

The quantities L11 and L?11 are functions of the transverse crack spacing\ the delamination length
and the in situ constraining conditions of the 89>!ply[ The substitution of l � 9 into eqns "49a\b#
gives the sti}ness reduction due to a pure matrix cracking[ The complete damage of the 89>!plies
"L11 � 0# is approached when full delamination "l � s# or extremely dense transverse cracking
"l � 9 and s : 9# occur[

5[ Strain energy release rate "SERR#

The potential energy method has been presented by Zhang et al[ "0881b\ 0883# for the evaluation
of the energy release rate due to transverse ply cracking and its induced delamination[ The potential
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energy "PE# of a damaged laminate element with a _nite gauge length of 1s and unity width under
the condition of plane strain in width!direction is

PE � U−Noy1s "40#

where U is the total strain energy stored in a laminate element[ It is a function of the matrix
cracking density and of the local delamination length[ The value of the strain energy can be
calculated by using the microstress _eld obtained in the previous sections and by integrating the
strain energy density over the element\ but that procedure involves tedious integration operations[
An alternate way presented by Zhang et al[ "0881b\ 0883# is that the reduced sti}ness of the
constrained 89>!plies and the laminate plate theory are applied to the {{equivalent|| damaged
laminate for computing the value of the total strain energy[ For the laminate examined here
without taking into account the contribution of residual hygrothermal stresses\ this value is given
by

U � sAd
11o

1
y "41#

In fracture mechanics\ the energy release associated with a particular damage mode is by de_nition
equal to the _rst partial derivative of the potential energy with respect to the crack surface area of
the respective damage^ the applied laminate loads\ "N#\ are _xed and the other damage modes
remain unchanged[ Combining eqns "40#\ "41# and "38a#\ the expressions for the strain energy
release rates associated with a local delamination and matrix cracking are obtained as

G ld �
Q11h

"2#s
1

o1
y

1L11

1l
"42a#

Gmc � −o1
yQ11s

1 1L11

1s
"42b#

The strain energy release rates normalized by the square of the laminate strain are

G ld

o1
y

�
Q11h

"2#s
1

L11

1l
"43a#

Gmc

o1
y

� −Q11s
1 1L11

1s
"43b#

The parameters Q11 and h"2# in eqns "42a#Ð"43b# are the transverse in!plane sti}ness of an intact
lamina and the half!thickness of the 89>!ply group\ respectively[ The expressions for the energy
release rates vary linearly with the _rst derivatives of the IDEF with respect to the delamination
length and the matrix crack spacing\ respectively[ They are valid for both the _ve!layer and the
three!layer model laminates by utilizing corresponding IDEF expressions given by eqns "49a# and
"49b#[

6[ Results and discussion

The T299:823 graphite:epoxy composite material system is examined here[ The basic properties
of a composite lamina are given by
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Fig[ 2[ A comparison between the _rst!order shear plate theory\ the modi_ed shear!lag model "Zhang et al[\ 0883# and
the variational model "Nairn and Hu\ 0881# in terms of the strain energy release rate associated with a local delamination
in the ð9:89Łs laminate[

E00 � 033[7 GPa E11 � E22 � 00[27 GPa G01 � G02 � 5[37 GPa

G12 � 2[34 GPa n01 � n02 � 9[2 single!ply thickness t � 9[021 mm

Firstly\ the _rst!order shear deformation plate theory is compared with the NarinÐHu|s "0881#
variational mechanics approach and our previous modi_ed shear!lag analysis "Zhang et al[\ 0881a\
0883# where the out!of!plane shear stresses are assumed to vary linearly across the thickness of the
cracked ply group and constraining layers "i[e[ a parabolic variation of the in!plane displacements#[
The ð9:89Łs lay!up is chosen to conduct the comparison since the variational approach and the
modi_ed shear!lag model are based on a three!layer model[ In Fig[ 2 the normalized SERRs for a
delamination at the 9>:89> interface in the ð9:89Łs laminate calculated by the three models just
mentioned\ are plotted against the normalized delamination length[ The good agreement between
the models suggests that the _rst!order plate theory provide an accurate prediction comparable
with the variational method and the modi_ed shear!lag analysis even if a further improvement is
expected to be achieved by utilizing a higher order plate theory[

6[0[ Stiffness reduction

In this section\ the sti}ness reduction is examined for various lay!up laminates by calculating
IDEF "L11# as a function of the delamination length with a given transverse ply crack half!spacing
of 1[53 mm which corresponds to a matrix crack density Cd � 0[783 cm−0[ In order to identify the
in~uences of the primary constraining layer\ the nearest!neighboring orientation angle of the core
89>!ply group is allowed to vary from 9Ð64> and the rest constraining plies remain unchanged[ In
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Fig[ 3[ IDEF as a function of the normalized delamination length for the laminates with varying primary constraining
layers "s � 1[53 mm � 19t#[

Fig[ 3\ the IDEF\ L11\ calculated by the FLM is plotted vs the normalized local delamination
length\ l:t\ for ð234:f:89Łs laminates where f � 9>\ 04>\ [ [ [ and 64>[ The values of the IDEF for
the all lay!ups increase "extension sti}ness decreases# with increasing delamination length and
reach unity when total delamination occurs "l � s � 19t � 1[53 mm#[ The curve corresponding to
a bigger orientation angle f lies above that associated with a smaller orientation angle^ suggesting
that the constraint of the primary constraining layers on the 89>!plies decreases with an increasing
lay!up orientation angle[ Figure 4 is a bar chart showing the e}ect of a changing orientation angle
f on IDEF when l � 9[4 mm[ The di}erence of the IDEF between f � 9> and f � 64> is about
03)[

Figure 5 is a plot of the IDEF against the normalized local delamination length for ð9:89Ł and
ð28:9:89Łs laminates where 8 � 29\ 34 and 59>[ It should be mentioned that the values of the
IDEF for a ð9:89Łs laminate are calculated by the three!layer model laminate I "TLM I# which can
be considered as a special case without secondary constraining layers[ There is no apparent
discrepancy between the di}erent secondary constraining layers for all delamination lengths[ Figure
6 is a bar chart of the IDEF against the type of a secondary constraining layer for l � 9[4 mm[
The di}erence between the laminates with a stronger secondary constraining layer "ð229:9:89Łs
laminate# and without a secondary constraining layer "ð9:89Łs laminate# is only 0[2) which can
be ignored^ suggesting that the in~uence of a secondary constraining layer on the sti}ness reduction
is negligible for the lay!ups examined here[

In Fig[ 7\ IDEF|s calculated by both the TLM laminate II and the FLM are plotted vs the
normalized delamination length for a laminate ð259:9:89Łs[ No notable di}erence between the
two methods is seen[ It is implied that a local lay!up con_guration has no signi_cant in~uence on
a sti}ness reduction[
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Fig[ 4[ IDEF varies with a changing _ber orientation of the primary constraining layer when s � 1[53 mm � 19t and
l � 9[4 mm[

Fig[ 5[ IDEF as a function of the normalized delamination length for the laminates with di}erent secondary constraining
layers "s � 1[53 mm � 19t#[
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Fig[ 6[ E}ect of the secondary constraining layer on IDEF for s � 1[53 mm � 19t and l � 9[4 mm[

Fig[ 7[ IDEF predicted by the FLM laminate and the TLM II laminate as a function of the normalized delamination
length for the ð259:9:89Łs laminate[
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Therefore\ one could conclude that the TLM laminate I of ðfm:891n:fmŁT\ the TLM laminate II
ðS?L:891n:S?RŁT and the FLM laminate ðSL:fm:891n:fm:SRŁT\ where SL\ SR\ S?L and S?R are sub!
laminates ð[ [ [:8iŁT\ ð8i:[ [ [ŁT\ ð[ [ [:8i:fmŁT and ðfm:8i:[ [ [ŁT\ respectively\ result in a comparable
accuracy for modeling the reduced sti}ness of the 89>!plies in ð[ [ [:8i:fm:89nŁs under in situ con!
straining conditions[ Consequently\ the more simple TLM laminate I ðfm:891n:fmŁT consisting of
the 89>!plies and their next neighboring orientation ply groups could be used to analyze the sti}ness
reduction of the constrained 89>!plies in ð[ [ [:8i:fm:89nŁs laminates[

6[1[ Strain ener`y release rate "SERR#

The normalized strain energy release rate for a local delamination is proportional to the _rst
partial derivative of the IDEF with respect to the delamination length\ 1L11:1l\ ðsee eqn "43a#Ł which
can be evaluated with the three model laminates\ respectively[ Assuming a constant transverse crack
density Cd � 0[783 cm−0 "transverse matrix crack half!spacing s � 19t � 1[53 mm# the normalized
strain energy release rate is plotted against the normalized delamination length\ l:t\ for various
laminate stacking sequences[

Figures 8Ð01 show the comparison between the FLM ðSL:fm:891n:fm:SRŁt laminate and the TLM
II ðS?R:891n:S?LŁT laminate for four laminates ð28:9:89Łs "8 � 29\ 34\ 59># and ð9:234:89Łs[ The
two models agree well when the delamination length exceeds about two single!ply thicknesses for
laminates ð28:9:89Łs "8 � 29\ 34\ 59># and about one single!ply thickness for a ð9:234:89Łs lami!
nate[ For a shorter delamination length the more accurate FLM laminate predicts a notably
bigger SERR than the TLM II laminate[ It is suggested that the strain energy release rate for a
delamination\ unlike the sti}ness reduction\ largely depends upon the details of a local lay!up
con_guration of a damaged laminate[

Fig[ 8[ Normalized strain energy release rate for a local delamination predicted by the FLM laminate and the TLM II
laminate as a function of the normalized delamination length for the ð229:9:89Łs laminate "s � 1[53 mm � 19t#[
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Fig[ 09[ Normalized strain energy release rate for a local delamination predicted by the FLM laminate and the TLM II
laminate as a function of the normalized delamination length for the ð234:9:89Łs laminate "s � 1[53 mm � 19t#[

Fig[ 00[ Normalized strain energy release rate for a local delamination predicted by the FLM laminate and the TLM II
laminate as a function of the normalized delamination length for the ð259:9:89Łs laminate "s � 1[53 mm � 19t#[

Figure 02 presents predictions of the FLM for laminates ð234:f:89Łs with various primary
constraining ply orientations and the same secondary constraining layer[ The SERRs increase
considerably with an increasing orientation angle of the next neighboring ply of the core 89>!plies[
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Fig[ 01[ Normalized strain energy release rate for a local delamination predicted by the FLM laminate and the TLM II
laminate as a function of the normalized delamination length for the ð9:234:89Łs laminate "s � 1[53 mm � 19t#[

Fig[ 02[ E}ect of the primary constraining layer on the normalized strain energy release rate for a local delamination
predicted by the FLM laminate for the ð34:f:89Łs laminates "s � 1[53 mm � 19t#[

In order to examine the e}ect of a secondary constraining layer on the SERR the laminates with
the same primary constraining layer and varying rest constraining plies are used in Fig[ 03[ The
values of the SERR for all examined laminates with the secondary constraining layers varying
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Fig[ 03[ E}ects of the secondary constraining layer on the normalized strain energy release rate for a local delamination
predicted by the FLM laminate "s � 1[53 mm � 19t#[

from ð229Ł\ ð234Ł and ð259Ł and without a secondary constraining layer are in a good agreement\
suggesting that the secondary constraining layers can be ignored for the evaluation of the nor!
malized SERR for the examined laminates[ Again\ the more simple TLM II ðfm:891n:fmŁT laminate
consisting of the 89>!plies and their next neighboring ply groups can be used to analyze the strain
energy release rate for a local delamination at the f:89> interface in ð[ [ [:8i:fm:89nŁs laminates by
applying the same laminate strain to both of the two laminates[

7[ Concluding remarks

Local delaminations initiating and growing from transverse ply cracks in ð[ [ [:8i:fm:89nŁs lami!
nates were studied by using a _rst!order shear laminate theory[ The three model laminates\ a _ve!
layer model "FLM# ðSL:fm:891n:fm:SRŁT\ and two three!layer model "TLM# laminates\
ðfm:891n:fmŁT and ðS?L:891n:S?RŁT\ were proposed to examine constraining mechanisms of the
constraining plies of the center 89>!ply group on transverse crack induced delaminations\ where
SL\ SR\ S?L and S?R are sublaminates ð[ [ [:8iŁT\ ð8i:[ [ [ŁT\ ð[ [ [:8i:fmŁT and ðfm:8i:[ [ [ŁT\ respectively[
The microstress and microstrain _elds in the cracked and delaminated _ve!layer and three!layer
model laminates were obtained by using the _rst!order shear laminate theory[The explicit
expression for the sti}ness reduction of the constrained 89>!plies was derived as a function of
delamination length and transverse crack spacing[ The strain energy release rates associated with
a local delamination and matrix cracking vary linearly with the _rst derivatives of the IDEF with
respect to the delamination length and crack spacing\ respectively[ It was seen for the examined
laminates that the nearest neighboring ply group of the 89>!plies primarily a}ects the sti}ness
reduction of the constrained transverse plies and also the normalized strain energy release rate
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whereas the in~uences of the other constraining layers are ignorable[ The strain energy release rate
for a local delamination largely depends on a local lay!up con_guration of a damaged laminate
but the sti}ness reduction does not[ Consequently\ the three!layer model laminate\ consisting of
the 89>!ply group and its two next neighboring ply groups\ could be used to analyze the in situ
reduced sti}ness of the constrained transverse plies and the strain energy release rates due to a
delamination and matrix cracking in the ð[ [ [:8i:fm:89nŁs laminates[ Therefore\ a more complicated
ply!by!ply analysis for a complete laminate is not needed[
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Appendix 0[ Derivation of the governing eqn "6#

The symmetry of the laminate implies

T "2#
b � 9 "A0[0#

The load!free condition at the top surface of the laminate and the reciprocal tractions at the
interfaces between the sublaminates can be speci_ed as

T "0#
t � 9 T "0#

b � T "1#
t T "1#

b � T "2#
t "A0[1a\b\c#

P "0#
t � 9 P "0#

b � P "1#
t P "1#

b � P "2#
t "A0[1d\e\f#

The second derivatives of eqns "4a\b# with respect to y read

V "0#
\yy−

h"0#

1
b"0#

\yy � V "1#
\yy¦

h"1#

1
b"1#

\yy "A0[2a#

V "1#
\yy−

h"1#

1
b"1#

\yy � V "2#
\yy¦

h"2#

1
b"2#

\yy "A0[2b#

Combination of eqns "5aÐc#\ "A0[2a\b# and "A0[1b\c# leads to

T "0#
b � T "1#

t �
0

A11

ð"A"1#
11¦A"2#

11 #"1B "0#
11¦h"0#A"0#

11 #b"0#
\yy

¦h"1#A"0#
11 "A"1#

11¦1A"2#
11 #b"1#

\yy¦h"2#A"0#
11A"2#

11b"2#
\yy Ł "A0[3a#

T "1#
b � T "2#

t �
A"2#

11

A11

ð"1B "0#
11¦h"0#A"0#

11 #b"0#
\yy

¦h"1# "A"1#
11¦1A"0#

11 #b"1#
\yy¦h"2# "A"0#

11¦A"1#
11 #b"2#

\yy Ł "A0[3b#
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V "0#
\yy �

0
A11

ð"h"0# "A"1#
11¦A"2#

11 #−1B "0#
11 #b"0#

\yy¦h"1# "A"1#
11¦1A"2#

11 #b"1#
\yy¦h"2#A"2#

11b"2#
\yy Ł "A0[3c#

V "1#
\yy �

−0
A11

ð"h"0#A"0#
11¦1B "0#

11 #b"0#
\yy¦h"1# "A"0#

11−A"2#
11 #b"1#

\yy−h"2#A"2#
11b"2#

\yy Ł "A0[3d#

V "2#
\yy �

−0
A11

ð"h"0#A"0#
11¦1B "0#

11 #b"0#
\yy¦h"1# "1A"0#

11¦A"1#
11 #b"1#

\yy¦h"2# "A"0#
11¦A"1#

11 #b"2#
\yy Ł "A0[3e#

where A11 is the extension sti}ness of an intact laminate "see Appendix 2#[ The substitution of eqns
"A0[3a\b\c# into eqns "5dÐf# gives the governing eqn "6#[ By integrating equation "A0[3cÐe# and
by eliminating the rigid body displacements give

V "0# �
0

A11

ð"h"0# "A"1#
11¦A"2#

11 #−1B "0#
11 #b"0#¦h"1# "A"1#

11¦1A"2#
11 #b"1#¦h"2#A"2#

11b"2#Ł¦a3y "A0[4a#

V "1# �
−0
A11

ð"h"0#A"0#
11¦1B "0#

11 #b"0#¦h"1# "A"0#
11−A"2#

11 #b"1#−h"2#A"2#
11b"2#Ł¦a4y "A0[4b#

V "2# �
−0
A11

ð"h"0#A"0#
11¦1B "0#

11 #b"0#¦h"1# "1A"0#
11¦A"1#

11 #b"1#¦h"2# "A"0#
11¦A"1#

11 #b"2#Ł¦a5y "A0[4c#

Appendix 1[ Determination of the constants ai\ uj and ck

The substitution of eqns "01#\ "11#\ "13a\b#\ "14a\b# and "18a# into the boundary conditions for
the sublaminates\ eqns "29aÐf#\ give

c2 � 9 "A1[0a#

q"u0 evs¦u1 e−vs#¦u2s¦u3 � 9 "A1[0b#

u0 evs¦u1 e−vs¦u2s¦u3 � 9 "A1[0c#

0
1
"h"1#q¦h"0##"u1 evs¦u1 e−vs#¦"u5−u4#s¦u7−u6 � 9 "A1[0d#

A"1#
11u4¦A"0#

11u5¦B "0#
11u2 � 0

1
N "A1[0e#

A"0#
11a3¦A"1#

11a4¦A"2#
11a5 � 0

1
N "A1[0f#

Substituting eqns "09\ 00# into the interfacial continuity conditions\ eqns "4a\b#\ one can obtain

a3 � a4 a4 � a5 "A1[1a\b#

Furthermore\ the continuity relations "20aÐk# take the form

s
2

j�0

ajg
"0#
j sinh"lj"s−l##¦a3"s−l# � k2"u0 ev"s−l#¦u1 ev"s−0##¦u5"s−l#¦u7 "A1[1c#
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s
2

j�0

ajg
"1#
j sinh"lj"s−l##¦a4"s−l# � −k0"u0 ev"s−l#¦u1 e−v"s−l##¦u4"s−l#¦u6 "A1[1d#

s
2

j�0

ajg
"2#
j sinh"lj"s−l##¦a5"s−l# � c3 "A1[1e#

s
2

j�0

ajp
"0#
j sinh"lj"s−l## � u0 ev"s−l#¦u1 e−v"s−l#¦u2"s−l#¦u3 "A1[1f#

s
2

j�0

ajp
"1#
j sin"lj"s−l## � q"u0 ev"s−l#¦u1 e−v"s−l##¦u2"s−l#¦u3 "A1[1g#

s
2

j�0

aj sinh"lj"s−l## � c0 ev0"s−0#¦c1 e−v0"s−l# "A1[1h#

−
A"0#

33¦A"1#
33q

v"A"0#
33¦A"1#

33 #
"u0 ev"s−0#−u1 e−v"s−l##−

0
1

u2"s−l#1−u3"s−l#¦u8 � 9 "A1[1i#

s
2

j�0

ajh
"1#
j cosh"lj"s−l##¦A"1#

11a3 � −k0vA"1#
11 "u0 ev"s−l#−u1 e−v"s−l##¦A"1#

11u4 "A1[1j#

s
2

j�0

ajh
"2#
j cosh"lj"s−l##¦A"2#

11a5 � 9 "A1[1k#

s
2

j�0

ajp
"1#
j lj cosh"lj"s−l## � vq"u0 ev"s−l#−u1 e−v"s−l##¦u2 "A1[1l#

s
2

j�0

ajlj cosh"lj"s−l## � v0"c0 ev0"s−l#−c1 e−v0"s−l## "A1[1m#

The subtraction of eqn "A1[0c# from eqn "A1[0b# gives

u1 � −u0 e1vs "A1[2#

Substituting eqn "A1[2# into eqn "A1[0c\d# results in

u3 � −u2s "A1[3#

"u5−u4#s¦u7−u6 � 9 "A1[4#

The subtraction of eqn "A1[1d# from eqn "A1[1c# gives the result

0
1

s
2

j�0

aj"h"0#p"0#
j ¦h"1#p"1#

j # sinh"lj"s−l##

�
0
1
"h"1#q¦h"0##"u0 ev"s−l#¦u1 e−v"s−l##−"u5−u4#l "A1[5a#

An appropriate combination of eqns "A1[1f# and "A1[1g# gives
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s
2

j�0

aj"h"0#p"0#
j ¦h"1#p"1#

j # sinh"lj"s−l##

�"h"1#q¦h"0##"u0 ev"s−l#¦u1 e−v"s−l##−"h"0#¦h"1##u2l "A1[5b#

The subtraction of eqn "A1[1g# from eqn "A1[1f# reads as follows

s
2

j�0

aj"p"0#
j −p"1#

j # sinh"lj"s−l## � 1u0"q−0# evs sinh"vl# "A1[5c#

A further combination of eqns "A1[1f# and "A1[1g# gives

s
2

j�0

aj"p"0#
j q−p"1#

j # sinh"lj"s−l## � u2"0−q#l "A1[5d#

Moreover\ from eqns "A1[5a# and "A1[5b# follows

ð1u5−1u4−"h"0#¦h"1##u2Łl � 9 "A1[6#

Using eqns "A1[6# and "A1[0e# one arrives at

u4 �
N

1"A"0#
11¦A"1#

11 #
−u2k4 u5 �

N

1"A"0#
11¦A"1#

11 #
¦u2k3 "A1[7a\b#

where k3 and k4 are listed in Appendix 2[ The substitution of eqns "A1[1a# and "A1[1b# into eqn
"A1[0f# gives eqn "21b#\ i[e[

a3 � a4 � a5 �
N

A11

"A1[8#

Eqns "A1[1j# and "A1[1# can be re!written as follows by using eqns "A1[2#\ "A1[8#\ "A1[7a# and
"A1[7b#

s
2

j�0

ajg
"1#
j lj cosh"lj"s−l##−

xN
A11

� −1k0v evs cosh"vl#u0−k4u2 "A1[09a#

s
2

j�0

ajp
"1#
j lj cosh"lj"s−l## � 1vq evs cosh"vl#u0¦u2 "A1[09b#

The solutions of the above two equations read

u2 � s
2

j�0

ajdj cosh"lj"s−l##¦
k5

A11

N "A1[00a#

evs cosh"vl#u0 � s
2

j�0

ajrj cosh"lj"s−l##¦
k6

A11

N "A1[00b#

where k5\ k6\ dj and rj are given in Appendix 2[ The substitution of eqns "A1[00a\b# into eqns
"A1[5c\d# and of eqn "A1[8# into eqn "A1[1k# gives
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s
2

j�0

aj ð"p"0#
j −p"1#

j # sinh "lj"s−l##¦1"0−q#rj tanh"vl# cosh"lj"s−l##Ł

� −1"0−q#k6 tanh"vl#
N

A11

"A1[01a#

s
2

j�0

aj ð"p"0#
j q−p"1#

j # sinh"lj"s−l##−"0−q#djl cosh"lj"s−l##Ł �"0−q#k5l
N

A11

"A1[01b#

s
2

j�0

ajh
"2#
j cosh"lj"s−l## � −

A"2#
11

A11

N "A1[01c#

Eqn "21a# is obtained when these three equations are written in the form of a matrix[ Further\ the
substitution of eqns "A1[7a\b# into eqns "A1[1c\d# gives

u4s¦u6 �
N

A11

"s¦xl#−k4lu2¦ s
2

j�0

ajg
"1#
j sinh"lj"s−l##−1u0k0 evs sinh"vl# "A1[02a#

u5s¦u7 �
N

A11

"s¦xl#¦k3lu2¦ s
2

j�0

ajg
"0#
j sinh"lj"s−l##¦1u0k2 evs sinh"vl# "A1[02b#

By using eqns "A1[5c\d#\ eqn "A1[02a\b# can be further reduced to

u4s¦u6 �
N

A11 $s¦x 0l¦ s
2

j�0

a¹ jg
"2#
j tanh"lj"s−l##1% "A1[02c#

u5s¦u7 �
N

A11 $s¦x 0l¦ s
2

j�0

a¹ jg
"2#
j tanh"lj"s−l##1% "A1[02d#

The substitution of eqns "A1[2# and "A1[3# into eqn "A1[1i# gives

u8 �
1"A"0#

33¦A"1#
33q#

v"A"0#
33¦A"1#

33 #
u0 evs cosh"vl#−

0
1

u2"s1−l1# "A1[02e#

Moreover\ c0\ c1 and c3 can be expressed by solving eqns "A1[1e\h\m#

c0 �
0

1v0

e−v0"s−l# s
2

j�0

aj ðv0 sinh"lj"s−l##¦lj cosh"lj"s−l##Ł "A1[03a#

c1 �
0

1v0

ev0"s−l# s
2

j�0

aj ðv0 sinh"lj"s−l##−lj cosh"lj"s−l##Ł "A1[03b#

c3 � s
2

j�0

ajg
"2#
j sinh"lj"s−l##¦"s−l#

N
A11

"A1[03c#

Appendix 2[ A list of the constants in the ~m analysis

A11 � 1"A"0#
11¦A"1#

11¦A"2#
11 # x �

A"2#
11

A"0#
11¦A"1#

11

"A2[0a\b#
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aij � aji "A2[1a#

a00 � D "0#
11¦

h"0# "3B "0#
11¦h"0#A"0#

11 #"A"1#
11¦A"2#

11 #−3B "0#1
11

1A11

"A2[1b#

a01 �
h"1# "B "0#

11¦0
1
h"0#A"0#

11 #"A"1#
11¦1A"2#

11 #

A11

"A2[1c#

a02 �
h"2# "B "0#

11¦0
1
h"0#A"0#

11 #A"2#
11

A11

"A2[1d#

a11 � D "1#
11¦

h"1#1"3A"0#
11A"2#

11¦A"1#
11A"2#

11¦A"0#
11A"1#

11 #
1A11

"A2[1e#

a12 �
h"1#h"2#A"2#

11 "A"1#
11¦1A"0#

11 #
1A11

"A2[1f#

a22 � D "2#
11¦

h"2#1A"2#
11 "A"1#

11¦A"0#
11 #

1A11

"A2[1g#

h"0#
j �"B "0#

11p"0#
j ¦A"0#

11g"0#
j #lj h"1#

j � A"1#
11g"1#

j lj "A2[2a\b#

h"2#
j � A"2#

11g"2#
j lj � −"h"0#

j ¦h"1#
j # j"0#

j �"D "0#
11p"0#

j ¦B "0#
11g"0#

j #lj "A2[2c\d#

j"1#
j � D "1#

11p"1#
j lj j"2#

j � D "2#
22lj "A2[2e\f#

g"0#
j �

p"0#
j ðh"0# "A"1#

11¦A"2#
11 #−1B "0#

11 Ł¦p"1#
j h"1# "A"1#

11¦1A"2#
11 #¦h"2#A"2#

11

A11

"A2[2g#

g"1#
j � −

p"0#
j "h"0#A"0#

11¦1B "0#
11 #¦p"1#

j h"1# "A"0#
11−A"2#

11 #−h"2#A"2#
11

A11

"A2[2h#

g"2#
j � −

p"0#
j "h"0#A"0#

11¦1B "0#
11 #¦p"1#

j h"1# "1A"0#
11¦A"1#

11 #¦h"2# "A"0#
11¦A"1#

11 #
A11

"A2[2i#

for j � 0\ 1\ 2

b00 � D "1#
11¦

h"1#1A"0#
11A"1#

11

3"A"0#
11¦A"1#

11 #
"A2[3a#

b10 � b01 �
h"1#A"1#

11 "1B "0#
11¦h"0#A"0#

11 #

3"A"0#
11¦A"1#

11 #
"A2[3b#

b11 � D "0#
11¦

h"0#A"1#
11 "3B "0#

11¦A"0#
11h"0##−3B "0#1

11

3"A"0#
11¦A"1#

11 #
"A2[3c#
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k0 �
A"0#

11 "h"1#q¦h"0##¦1B "0#
11

1"A"0#
11¦A"1#

11 #
k1 � vqD "1#

11 "A2[4a\b#

k2 �
A"1#

11 "h"1#q¦h"0##−1B "0#
11

1"A"0#
11¦A"1#

11 #
k3 �

"h"0#¦h"1##A"1#
11−1B "0#

11

1"A"0#
11¦A"1#

11 #
"A2[4c\d#

k4 �
"h"0#¦h"1##A"0#

11¦1B "0#
11

1"A"0#
11¦A"1#

11 #
k5 �

xq
k4q−k0

"A2[4e\f#

k6 � −
x

1v"k4q−k0#
"A2[4g#

dj �
lj"qg"1#

j ¦k0p
"1#
j #

k0−k4q
rj �

lj"g"1#
j ¦k4p

"1#
j #

1v"k0−k4q#
"A2[5a\b#

for j � 0\ 1\ 2[

Appendix 3[ A List of the constants in the TLM analysis

A?11 � 1"A?"0#
11¦A?"1#

11 # x? �
A?"1#

11

A?"0#
11

"A3[0a\b#

a?00 � D?"0#
11¦

h?"0# "3B?"0#
11¦h?"0#A?"0#

11 #A?"1#
11−3B?"0#1

11

1A?11

"A3[1a#

a?01 � a?10 �
h?"1# "B?"0#

11¦0
1
h?"0#A?"0#

11 #A?"1#
11

A?11

"A3[1b#

a?11 � D?"1#
11¦

h?"1#1A?"1#
11A?"0#

11

1A?11

"A3[1c#

l?10\ l?11 �
a?00A?"1#

33¦a?11A?"0#
332z"a?00A?"1#

33¦a?11A?"0#
33 #1−3A?"0#

33A?"1#
33 "a?00a?11−a?101#

1"a?00a?11−a?101#
"A3[2#

p?j � −
a?01l?1j

a?00l?1j −A?"0#
33

"A3[3#

g?"0#
j �

p?j"h?"0#A?"1#
11−1B?"0#

11 #¦h?"1#A?"1#
11

A?11

"A3[4a#

g?"1#
j � −

p?j"h?"0#A?"0#
11¦1B?"0#

11 #¦h?"1#A?"0#
11

A?11

"A3[4b#

h?j �"B?"0#
11p?j¦A?"0#

11g?"0#
j #l?j "A3[5#
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